bug修复

main
chaopower 2023-08-01 15:51:00 +08:00
parent 967ad45cb4
commit 8244373e21
8 changed files with 667 additions and 760 deletions

1342
t.json

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -19,7 +19,7 @@ class BaseAssignment:
self.result = tree() # 报告结果 self.result = tree() # 报告结果
self.signtb = set() # 具有明确或潜在临床意义的基因变异 self.signtb = set() # 具有明确或潜在临床意义的基因变异
self.signdurg = set() # 潜在临床获益的治疗药物 self.signdurg = set() # 潜在临床获益的治疗药物
self.sign_from_type = defaultdict(dict) # 不同来源有意义突变记录NCCN使用
self.drugs_type = dict() self.drugs_type = dict()
@ -37,7 +37,8 @@ class Parse(BaseAssignment):
if data.empty: if data.empty:
raise UserWarning('sample_info表为空生成报告失败') raise UserWarning('sample_info表为空生成报告失败')
data = data.applymap( data = data.applymap(
lambda x: str(x).replace('.', '/').replace('-', '/').replace('——', '/') if str(x) in ['.', '-', '——'] else x) lambda x: str(x).replace('.', '/').replace('-', '/').replace('——', '/') if str(x) in ['.', '-',
'——'] else x)
data_dict = data.to_dict('index')[0] data_dict = data.to_dict('index')[0]
data_dict['receiveTime'] = re.split(' ', data_dict['receiveTime'])[0] data_dict['receiveTime'] = re.split(' ', data_dict['receiveTime'])[0]
data_dict['reportTime'] = time.strftime("%Y-%m-%d", time.localtime()) data_dict['reportTime'] = time.strftime("%Y-%m-%d", time.localtime())
@ -60,7 +61,8 @@ class Parse(BaseAssignment):
# 拆分hgvs # 拆分hgvs
data[['gene', 'transcript', 'exon', 'nacid', 'aacid']] = data['AAChange.refGene'].str.split(':', expand=True) data[['gene', 'transcript', 'exon', 'nacid', 'aacid']] = data['AAChange.refGene'].str.split(':', expand=True)
# 没有氨基酸改变用核苷酸改变代替 # 没有氨基酸改变用核苷酸改变代替
data['aacid'] = data['aacid'].fillna(data['nacid']) # data['aacid'] = data['aacid'].fillna(data['nacid'])
data['aacid'] = data['aacid'].fillna('/')
for alter, alter_data in data.groupby('AAChange.refGene'): for alter, alter_data in data.groupby('AAChange.refGene'):
alter_data_need = alter_data[['gene', 'transcript', 'exon', 'nacid', 'aacid', 'mutant_frequency', alter_data_need = alter_data[['gene', 'transcript', 'exon', 'nacid', 'aacid', 'mutant_frequency',
@ -77,6 +79,7 @@ class Parse(BaseAssignment):
# 汇总 # 汇总
if alter_res['AMP_mut_level'] in ['I', 'II']: if alter_res['AMP_mut_level'] in ['I', 'II']:
self.signtb.add(alter) self.signtb.add(alter)
self.sign_from_type['target'][alter_res['gene']] = '%s %s' % (alter_res['gene'], alter_res['nacid'])
self.result['snvindel'] = res self.result['snvindel'] = res
@ -88,19 +91,21 @@ class Parse(BaseAssignment):
return return
data = data[data['Validated'] == 1].reset_index() data = data[data['Validated'] == 1].reset_index()
for alter, alter_data in data.groupby('FUSION'): for alter, alter_data in data.groupby('FUSION'):
alter_data_need = alter_data[['FUSION', 'FREQ1', 'AMP_mut_level', 'Gene_function']] alter_data_need = alter_data[['FUSION', 'FREQ1', 'AMP_mut_level', 'Gene_function', 'Gene_Symbol']]
alter_res = alter_data_need.iloc[0].to_dict() alter_res = alter_data_need.iloc[0].to_dict()
alter_res['drug_category'] = self._drug_category(alter_data) alter_res['drug_category'] = self._drug_category(alter_data)
drug_content = alter_data[ drug_content = alter_data[
['DrugCn', 'Response_Type', 'Indication', 'Evidence_Source', 'Efficacy_Evidence']] ['DrugCn', 'Response_Type', 'Indication', 'Evidence_Source', 'Efficacy_Evidence']]
drug_content = drug_content[drug_content['DrugCn'] != '.'] drug_content = drug_content[drug_content['DrugCn'] != '.']
alter_res['drug_content'] = drug_content.reset_index().to_dict('records') alter_res['drug_content'] = drug_content.reset_index().to_dict('records')
alter_res['alter'] = '%s 融合' % (alter_res['FUSION'].replace('-', ':')) des = '%s 融合' % (alter_res['FUSION'].replace('-', '::'))
alter_res['alter'] = des
res.append(alter_res) res.append(alter_res)
# 汇总 # 汇总
if alter_res['AMP_mut_level'] in ['I', 'II']: if alter_res['AMP_mut_level'] in ['I', 'II']:
self.signtb.add(alter) self.signtb.add(alter)
self.sign_from_type['fusion'][alter_res['Gene_Symbol']] = des
self.result['fusion'] = res self.result['fusion'] = res
@ -121,12 +126,14 @@ class Parse(BaseAssignment):
['DrugCn', 'Response_Type', 'Indication', 'Evidence_Source', 'Efficacy_Evidence']] ['DrugCn', 'Response_Type', 'Indication', 'Evidence_Source', 'Efficacy_Evidence']]
drug_content = drug_content[drug_content['DrugCn'] != '.'] drug_content = drug_content[drug_content['DrugCn'] != '.']
alter_res['drug_content'] = drug_content.reset_index().to_dict('records') alter_res['drug_content'] = drug_content.reset_index().to_dict('records')
des = '%s %s' % (alter, alter_res['muttype'])
alter_res['alter'] = '%s %s' % (alter, alter_res['muttype']) alter_res['alter'] = '%s %s' % (alter, alter_res['muttype'])
res.append(alter_res) res.append(alter_res)
# 汇总 # 汇总
if alter_res['AMP_mut_level'] in ['I', 'II']: if alter_res['AMP_mut_level'] in ['I', 'II']:
self.signtb.add(alter) self.signtb.add(alter)
self.sign_from_type['cnv'][alter_res['Gene_Symbol']] = des
self.result['cnv'] = res self.result['cnv'] = res
def hotspot(self): def hotspot(self):
@ -268,13 +275,21 @@ class Parse(BaseAssignment):
def chemo(self): def chemo(self):
chemo_res = self._to_records('chemo_res', need=True) chemo_res = self._to_records('chemo_res', need=True)
chemo_res_df = pd.DataFrame(chemo_res)
chemo_res_df.index = chemo_res_df.index + 1 chemo_res_list = []
chemo_res_df = chemo_res_df.reset_index() chemo_sign_drug_num = 0
self.result['chemo']['chemo_res'] = chemo_res_df.to_dict('records') chemo_drug_category = dict()
self.result['sum']['chemo']['drug_num'] = len(chemo_res) if chemo_res:
self.result['sum']['chemo']['drug_category'] = pd.DataFrame(chemo_res).groupby('推荐程度')['药物名称'].apply( chemo_res_df = pd.DataFrame(chemo_res)
','.join).to_dict() chemo_res_df.index = chemo_res_df.index + 1
chemo_res_df = chemo_res_df.reset_index()
chemo_res_list = chemo_res_df.to_dict('records')
chemo_sign_drug_num = len(chemo_res_df[chemo_res_df['推荐程度'] == '推荐'])
chemo_drug_category = chemo_res_df.groupby('推荐程度')['药物名称'].apply(
','.join).to_dict()
self.result['chemo']['chemo_res'] = chemo_res_list
self.result['sum']['chemo']['drug_num'] = chemo_sign_drug_num
self.result['sum']['chemo']['drug_category'] = chemo_drug_category
chemo_comb = self._to_records('chemo_comb', need=True) chemo_comb = self._to_records('chemo_comb', need=True)
chemo_comb_res = dict() chemo_comb_res = dict()
@ -309,13 +324,15 @@ class Parse(BaseAssignment):
hereditary_risk = pd.DataFrame(self.sampledata['hereditary_risk']) hereditary_risk = pd.DataFrame(self.sampledata['hereditary_risk'])
if not hereditary_risk.empty: if not hereditary_risk.empty:
risk = ','.join(hereditary_risk[hereditary_risk['风险值'] == '偏高']['肿瘤类型'].to_list()) risk = ','.join(hereditary_risk[hereditary_risk['风险值'] == '偏高']['肿瘤类型'].to_list()) + '风险可能较高'
self.result['hereditary'] = hereditary.to_dict('records') self.result['hereditary'] = hereditary.to_dict('records')
self.result['sum']['hereditary']['result'] = result self.result['sum']['hereditary']['result'] = result
self.result['sum']['hereditary']['disease'] = disease self.result['sum']['hereditary']['disease'] = disease
self.result['sum']['hereditary']['risk'] = risk self.result['sum']['hereditary']['risk'] = risk
self.result['sum']['hereditary']['num'] = len(hereditary.index)
def qc(self): def qc(self):
# self._to_dicts('qc') # self._to_dicts('qc')
data = pd.DataFrame(self.sampledata['qc']) data = pd.DataFrame(self.sampledata['qc'])
@ -335,11 +352,35 @@ class Parse(BaseAssignment):
if not data.empty: if not data.empty:
data = data.dropna() data = data.dropna()
data = data[data['drug_detail'] != '.'] data = data[data['drug_detail'] != '.']
data = data.applymap(lambda x: str(x).replace('\\\\', '\n') if ' \\\\' in str(x) else x)
res = data.set_index('drug_name')['drug_detail'].to_dict() res = data.set_index('drug_name')['drug_detail'].to_dict()
self.result['drugs']['drugs_detail'] = res self.result['drugs']['drugs_detail'] = res
def indication(self): def indication(self):
self._to_records('indication') indication_res = self._to_records('indication', need=True)
trans = dict(
突变='target',
融合='fusion',
扩增='cnv'
)
res = list()
if indication_res:
# indication_res_df = pd.DataFrame(indication_res)
# indication_res_df['变异'] = indication_res_df.apply(
# lambda x: self.sign_from_type.get(trans.get(tbtype, ''), '') for tbtype in x['检测内容'].split('/'))
for indication_sp in indication_res:
gene_tbtype_res = list()
for tbtype in indication_sp['检测内容'].split('/'):
if tbtype not in trans:
continue
if trans[tbtype] not in self.sign_from_type:
continue
if indication_sp['基因'] not in self.sign_from_type[trans[tbtype]]:
continue
gene_tbtype_res.append(self.sign_from_type[trans[tbtype]][indication_sp['基因']])
indication_sp['检测情况'] = '\n'.join(gene_tbtype_res)
res.append(indication_sp)
self.result['indication'] = res
def _to_records(self, sheetname, need=False): def _to_records(self, sheetname, need=False):
""" """
@ -376,17 +417,21 @@ class Parse(BaseAssignment):
for drug_category, drug_category_alter_data in groupdata.groupby('Drug_Category'): for drug_category, drug_category_alter_data in groupdata.groupby('Drug_Category'):
if drug_category == '.': if drug_category == '.':
continue continue
drug_category_alter_data['drug_split'] = drug_category_alter_data['DrugCn'].str.split(',')
drug_category_alter_data_split = drug_category_alter_data.explode('drug_split').reset_index()
# 敏感,可能敏感药物统计 # 敏感,可能敏感药物统计
if drug_category in ['a', 'b', 'c']: if drug_category in ['a', 'b', 'c']:
self.signdurg.update(set(drug_category_alter_data['DrugCn'].str.split(',').explode().tolist())) self.signdurg.update(set(drug_category_alter_data_split['drug_split'].tolist()))
drug_category_alter_data['drugdes'] = drug_category_alter_data.apply( drug_category_alter_data_split['drugdes'] = drug_category_alter_data_split.apply(
lambda x: '%s%s 级】' % (x['DrugCn'], x['AMP_evidence_level']), axis=1) lambda x: '%s%s 级】' % (x['drug_split'], x['AMP_evidence_level']), axis=1)
drug_category_res[drug_category] = '\n'.join(drug_category_alter_data['drugdes'].to_list()) drug_category_res[drug_category] = '\n'.join(drug_category_alter_data_split['drugdes'].to_list())
# 所有药物信息 # 所有药物信息
groupdata['list_col'] = groupdata['DrugCn'].str.replace(' + ', '+').str.split(r'[+,]') groupdata['list_col'] = groupdata['DrugCn'].str.replace(' + ', '+').str.split(r'[+,]')
exploded_df = groupdata.explode('list_col').reset_index() exploded_df = groupdata.explode('list_col').reset_index()
exploded_df = exploded_df[(exploded_df['list_col'] != '.') & (exploded_df['list_col'] != '')] exploded_df = exploded_df[(exploded_df['list_col'] != '.') & (exploded_df['list_col'] != '')]
exploded_df.loc[exploded_df['Response_Type'].str.contains('敏感'), 'Response_Type'] = '可能敏感'
exploded_df.loc[exploded_df['Response_Type'].str.contains('耐药'), 'Response_Type'] = '可能耐药'
exploded_dict = exploded_df.groupby('Response_Type')['list_col'].agg(lambda x: list(set(x))).to_dict() exploded_dict = exploded_df.groupby('Response_Type')['list_col'].agg(lambda x: list(set(x))).to_dict()
for drug_type in exploded_dict: for drug_type in exploded_dict:
@ -448,8 +493,8 @@ def run(path):
parse = Parse(read(path)) parse = Parse(read(path))
res = parse.collect() res = parse.collect()
resjson = json.dumps(res, indent=4, ensure_ascii=False) resjson = json.dumps(res, indent=4, ensure_ascii=False)
with open('t.json', 'w') as f: # with open('t.json', 'w') as f:
f.write(resjson) # f.write(resjson)
return resjson return resjson

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.