239 lines
9.6 KiB
Python
Executable File
239 lines
9.6 KiB
Python
Executable File
#! /usr/bin/env python3
|
||
|
||
import argparse
|
||
import logging
|
||
import os
|
||
|
||
import pandas as pd
|
||
import pysam
|
||
|
||
|
||
class ChemoRun:
|
||
|
||
def __init__(self, database, probe, cancer, project, output_dir, name, vcf):
|
||
self.database = database
|
||
self.probe = probe
|
||
self.output_dir = output_dir
|
||
self.name = name
|
||
self.vcf = vcf
|
||
self.cancer = cancer
|
||
self.project = project
|
||
|
||
@staticmethod
|
||
def read_info(project):
|
||
info_path = os.path.join(os.environ.get('DATABASE'), 'info.csv')
|
||
read_res = pd.read_csv(info_path)
|
||
read_res = read_res.fillna('.')
|
||
read_res = read_res[read_res['project'] == project]
|
||
gene_list = list()
|
||
if any(read_res['chemotherapy_drug'].values):
|
||
genecontent = read_res['chemotherapy_drug'].values[0]
|
||
if genecontent != '.':
|
||
gene_list = genecontent.split('/')
|
||
if not gene_list:
|
||
raise UserWarning(f'化疗检测基因为空!{project} ,请查看参数project是否正确!')
|
||
return gene_list
|
||
|
||
@staticmethod
|
||
def get_drug_plan(x, drugsum):
|
||
tlist = x.split('+')
|
||
tdeslist = list()
|
||
for tdes in tlist:
|
||
if tdes.strip() in drugsum:
|
||
t1_des = drugsum[tdes.strip()]
|
||
tdeslist.append(t1_des)
|
||
|
||
if '慎用' in tdeslist or '谨慎' in tdeslist:
|
||
return '慎用'
|
||
elif '推荐' in tdeslist:
|
||
return '推荐'
|
||
elif '常规' in tdeslist:
|
||
return '可选'
|
||
else:
|
||
return '可选'
|
||
|
||
@staticmethod
|
||
def build_record_dict(vcf_file):
|
||
vcfdata = pysam.VariantFile(vcf_file)
|
||
records = {}
|
||
for record in vcfdata:
|
||
chrom = record.chrom
|
||
pos = record.pos
|
||
records[(chrom, pos)] = record
|
||
return records
|
||
|
||
def parsedata(self):
|
||
"""
|
||
处理chemo_drug_rsid_snppos.xlsx, 并生成对应bed文件
|
||
"""
|
||
data = pd.read_excel(self.database, None)
|
||
gene_list = self.read_info(self.project)
|
||
|
||
drug_rsid = data['drug_rsid']
|
||
drug_combine = data['drug_combine']
|
||
drug_rsid.fillna('.', inplace=True)
|
||
drug_combine.fillna('.', inplace=True)
|
||
drug_rsid_data = drug_rsid[
|
||
(drug_rsid['source'].str.contains(self.probe) & (drug_rsid['genename'].apply(lambda x: x in gene_list)))]
|
||
drug_combine_data = drug_combine[drug_combine['treatResult'].apply(lambda x: x in self.cancer)]
|
||
|
||
if drug_rsid_data.empty:
|
||
logging.error(f'无此项目!{self.probe} ,请查看参数probe是否正确!')
|
||
raise UserWarning(f'无此项目!{self.probe} ,请查看参数probe是否正确!')
|
||
|
||
# 生成bed文件
|
||
beddata = drug_rsid_data[['chr', 'start', 'end', 'rsid']].drop_duplicates()
|
||
beddata.rename(columns={'chr': '#chr'}, inplace=True)
|
||
bedpath = os.path.join(self.output_dir, f'{self.probe}_chemo.bed')
|
||
beddata.to_csv(bedpath, sep='\t', index=False)
|
||
|
||
return drug_rsid_data, drug_combine_data, bedpath
|
||
|
||
def parse_vcf(self, vcfpath, drug_rsid_data, drug_combine_data):
|
||
records = self.build_record_dict(vcfpath)
|
||
|
||
beddata = drug_rsid_data[['chr', 'start', 'end', 'rsid']].drop_duplicates()
|
||
fliterdata = pd.DataFrame()
|
||
for _, row in beddata.iterrows():
|
||
chrom = row['chr']
|
||
end = row['end']
|
||
fliter = pd.DataFrame()
|
||
if (chrom, end) not in records:
|
||
fliter = pd.concat([fliter, drug_rsid_data[
|
||
(drug_rsid_data['chr'] == chrom) &
|
||
(drug_rsid_data['end'] == end) &
|
||
(drug_rsid_data['genotype'] == '0/0')
|
||
]])
|
||
else:
|
||
record = records[(chrom, end)]
|
||
ref = record.ref
|
||
alt = record.alts[0]
|
||
gt = '/'.join(list(map(str, sorted(record.samples.get(record.samples.keys()[0]).get('GT')))))
|
||
fliter = pd.concat([fliter, drug_rsid_data[
|
||
(drug_rsid_data['chr'] == chrom) &
|
||
(drug_rsid_data['end'] == end) &
|
||
(drug_rsid_data['ref'] == ref) &
|
||
(drug_rsid_data['alt'] == alt) &
|
||
(drug_rsid_data['genotype'] == gt)
|
||
]])
|
||
if fliter.empty:
|
||
raise UserWarning(
|
||
'chr: %s , end: %s 数据库未能匹配, 野生型0/0也未能匹配' % (chrom, end))
|
||
fliterdata = pd.concat([fliterdata, fliter])
|
||
# 生成过滤之后文件
|
||
respath = os.path.join(self.output_dir, f'{self.name}.chemo.res.csv')
|
||
if not fliterdata.empty:
|
||
fliterdata['probe'] = self.probe
|
||
fliterdata.to_csv(respath, sep='\t', index=False)
|
||
|
||
# 分类汇总 同位点,药物合并 drug.infos.txt
|
||
drugrsid = fliterdata[['drugname', 'genename', 'rsid', 'result', 'level', 'tips', 'drugsort']]
|
||
drugrsid = drugrsid.drop_duplicates()
|
||
resdrugrsid = drugrsid.groupby(['drugname', 'genename', 'rsid', 'result', 'level', 'drugsort'])['tips'].agg(
|
||
','.join).reset_index()
|
||
resdrugrsid.rename(columns=
|
||
{'drugname': '药物', 'genename': '检测基因', 'rsid': '检测位点', 'result': '基因型',
|
||
'level': '证据等级', 'tips': '用药提示'},
|
||
inplace=True)
|
||
resdrugrsid = resdrugrsid.sort_values(by=['drugsort', '药物', '检测基因'])
|
||
resdrugrsid.to_csv(os.path.join(self.output_dir, f'{self.name}.drug.infos.txt'), index=False, sep='\t')
|
||
|
||
# 药物 药物疗效 推荐程度合并 drug.res.txt
|
||
drugtypesum = fliterdata[['drugname', 'drugtype', 'rsid', 'weights']]
|
||
drugtypesum = drugtypesum.drop_duplicates()
|
||
drugtyperes = list()
|
||
drugsum = dict()
|
||
for drug, drugdata in drugtypesum.groupby('drugname'):
|
||
tipsnum = drugdata.groupby(['drugtype']).agg({'weights': 'sum'}).to_dict('index')
|
||
sumlist = list()
|
||
if 'LX' in tipsnum:
|
||
LX = tipsnum['LX']['weights']
|
||
if LX > 0:
|
||
lxdes = '疗效较好'
|
||
lxnum = 1
|
||
elif LX == 0:
|
||
lxdes = '疗效一般'
|
||
lxnum = 0
|
||
else:
|
||
lxdes = '疗效较差'
|
||
lxnum = -1
|
||
sumlist.append(lxdes)
|
||
else:
|
||
LX = 0
|
||
lxnum = 0
|
||
if 'DF' in tipsnum:
|
||
DF = tipsnum['DF']['weights']
|
||
if DF > 0:
|
||
dfdes = '毒副较低'
|
||
dfnum = 1
|
||
elif DF == 0:
|
||
dfdes = '毒副一般'
|
||
dfnum = 0
|
||
else:
|
||
dfdes = '毒副较高'
|
||
dfnum = -1
|
||
sumlist.append(dfdes)
|
||
else:
|
||
DF = 0
|
||
dfnum = 0
|
||
|
||
# 评价方式 疗效 1 0 -1, 毒副 1 0 -1 ,可形成9宫格
|
||
sumnum = lxnum + dfnum
|
||
if sumnum > 0:
|
||
sumdes = '推荐'
|
||
elif sumnum == 0:
|
||
sumdes = '常规'
|
||
else:
|
||
sumdes = '谨慎'
|
||
|
||
# 特别药物处理
|
||
if (drug == "氟尿嘧啶" or drug == "卡培他滨") and DF < 0:
|
||
sumdes = '谨慎'
|
||
|
||
drugtyperes.append(dict(
|
||
药物名称=drug,
|
||
疗效=LX,
|
||
毒副=DF,
|
||
推荐程度=sumdes,
|
||
疗效和毒副总结=','.join(sumlist)
|
||
))
|
||
drugsum[drug] = sumdes
|
||
|
||
# 报告中展示药物有顺序
|
||
drugsort = fliterdata[['drugname', 'drugsort']].drop_duplicates()
|
||
drugsort_dict = drugsort.set_index('drugname')['drugsort'].to_dict()
|
||
drugtyperes_sort = sorted(drugtyperes, key=lambda x: (
|
||
drugsort_dict[x['药物名称']] if x['药物名称'] in drugsort_dict else 100, x['药物名称']))
|
||
|
||
# 生成数据
|
||
pd.DataFrame(drugtyperes_sort).to_csv(os.path.join(self.output_dir, f'{self.name}.drug.res.txt'), index=False,
|
||
sep='\t')
|
||
|
||
# 联合用药
|
||
if not drug_combine_data.empty:
|
||
drug_combine_data['临床提示'] = drug_combine_data['用药方案'].apply(self.get_drug_plan, args=(drugsum,))
|
||
drug_combine_data.to_csv(os.path.join(self.output_dir, f'{self.name}.chemo.comb.txt'), index=False,
|
||
sep='\t')
|
||
|
||
def run(self):
|
||
try:
|
||
drug_rsid_data, drug_combine_data, bedpath = self.parsedata()
|
||
self.parse_vcf(self.vcf, drug_rsid_data, drug_combine_data)
|
||
except UserWarning as e:
|
||
raise UserWarning(e)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="Chemotherapy Process Script")
|
||
|
||
parser.add_argument('-d', '--database', help="Path to chemo_drug's database", required=True)
|
||
parser.add_argument('-probe', '--probe', help="Probe name", required=True)
|
||
parser.add_argument('-n', '--name', help="Name for sample", required=True)
|
||
parser.add_argument('-v', '--vcf', help="germline vcf", required=True)
|
||
parser.add_argument('-c', '--cancer', help="cancer", required=True)
|
||
parser.add_argument('-p', '--project', help="Project", required=True)
|
||
parser.add_argument('-o', '--output_dir', help="Output directory, default ./", default='')
|
||
args = parser.parse_args()
|
||
chemorun = ChemoRun(args.database, args.probe, args.cancer, args.project, args.output_dir, args.name, args.vcf)
|
||
chemorun.run()
|