pipeline/codes/hereditary.py

78 lines
3.6 KiB
Python
Raw Normal View History

2023-11-29 15:13:30 +08:00
#! /usr/bin/env python3
import argparse
import os
import re
import pandas as pd
class HereditaryRun:
def __init__(self, database, project, output_dir, name, file):
self.database = database
self.project = project
self.output_dir = output_dir
self.name = name
self.file = file
def filter(self):
# 过滤掉不包含 hcs 的还有是等于12 级的
data = pd.read_csv(self.file, sep='\t')
data.fillna('.', inplace=True)
data = data[((data['ClinicalSign'] == 1) | (data['ClinicalSign'] == 2)) & (data['genetag'].str.contains('hcs'))]
prefile = os.path.join(self.output_dir, f'{self.name}.hereditary.pre.txt')
data.to_csv(prefile, sep='\t', index=False)
database = pd.read_excel(self.database)
database.fillna('.', inplace=True)
database = database[database['ItemId'].str.contains(self.project)]
expanded_database = database.assign(Gene=database['Gene'].str.split(';')).explode('Gene')
result_df = pd.DataFrame(columns=['Gene', 'Syndrome_Cn', 'inheritance', 'genotype', 'mutation'])
for _, rows in data.iterrows():
matches = re.match(r"([A-Za-z0-9]+):.*:(p\..*)", rows['AAChange_refGene'])
2023-12-12 10:59:08 +08:00
row_df = pd.DataFrame(columns=['Gene', 'Syndrome_Cn', 'inheritance', 'genotype', 'mutation', 'ClinicalSign'])
2023-11-29 15:13:30 +08:00
gene, mutation = '', ''
if matches:
gene = matches.group(1)
mutation = matches.group(2)
else:
raise UserWarning('HGVS 解析错误!')
selected_rows = expanded_database[expanded_database['Gene'].str.split(';').apply(lambda x: gene in x)]
row_df['Syndrome_Cn'] = selected_rows['Syndrome_Cn']
row_df['inheritance'] = selected_rows['inheritance']
row_df['Gene'] = gene
row_df['mutation'] = mutation
2023-12-28 10:41:01 +08:00
row_df['genotype'] = '纯合' if rows['Freq'] > 0.9 else '杂合'
2023-12-12 10:59:08 +08:00
row_df['ClinicalSign'] = str(rows['ClinicalSign'])
2023-11-29 15:13:30 +08:00
result_df = pd.concat([result_df, row_df])
hereditaryfile = os.path.join(self.output_dir, f'{self.name}.hereditary.txt')
result_df.to_csv(hereditaryfile, sep='\t', index=False)
database['res'] = '同一般人群'
database.loc[database['Syndrome_Cn'].apply(lambda x: x in result_df['Syndrome_Cn'].values), 'res'] = '风险较高'
risk = database[['Cancer_Cn', 'res']]
expanded_risk = risk.assign(Cancer_Cn=risk['Cancer_Cn'].str.split('')).explode('Cancer_Cn')
expanded_risk['res'] = expanded_risk.groupby('Cancer_Cn')['res'].transform(
lambda x: '风险较高' if '风险较高' in x.values else x.iloc[0])
expanded_risk.drop_duplicates(inplace=True)
riskfile = os.path.join(self.output_dir, f'{self.name}.risk.txt')
expanded_risk.to_csv(riskfile, sep='\t', index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="hereditary Process Script")
2023-11-30 15:31:35 +08:00
parser.add_argument('-d', '--database', help="Path to hereditary_mut's database", required=True)
2023-11-29 15:13:30 +08:00
parser.add_argument('-p', '--project', help="Project name", required=True)
parser.add_argument('-n', '--name', help="Name for sample", required=True)
parser.add_argument('-f', '--file', help="germline filter file", required=True)
parser.add_argument('-o', '--output_dir', help="Output directory, default ./", default='')
args = parser.parse_args()
hereditary = HereditaryRun(args.database, args.project, args.output_dir, args.name, args.file)
hereditary.filter()