layout/tools/t7.py

377 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import copy
import os
import time
from collections import defaultdict
from datetime import datetime
import pandas as pd
from tools.common import basedir, log
class AutoLayout:
"""
自动化派样
"""
def __init__(self, path, librarynum, output=basedir, data_limit=1750):
self.path = path
self.output = output
self.librarynum = int(librarynum)
self.data_limit = data_limit
self.index_assignments = defaultdict(list)
# 芯片数量量大小
self.chip_size = dict()
# 芯片是否极致
self.chip_type = dict()
# 芯片barcode
self.chip_barcode_recode = defaultdict(set)
# 芯片原始数据读取
self.ori_data = self.read_excel()
# 当前锚芯片
self.loc_chip_num = 1
# 芯片客户
self.chip_customer = defaultdict(set)
# 文库
self.chip_classification = defaultdict(set)
self.rule = self.read_rule()
# 甲基化文库不大于200,WGBS文库不大于200G
self.chip_speciallib_size = dict()
self.logger = log(os.path.basename(f'{path}.txt'))
self.return_log = list()
self.no_assign_data = list()
def read_excel(self):
"""
原始数据处理
:return:
"""
merge = pd.read_excel(self.path, None)
ori_data = dict()
for name, sheet in merge.items():
sheet.fillna('.', inplace=True)
ori_data[name] = sheet.to_dict('records')
return ori_data
def add_new_data(self, chipname, library_data, newer=True):
"""
增加新数据到已知芯片上
:param chipname:
:param library_data:
:param newer:
:return:
"""
self.index_assignments[chipname].extend(library_data['data'])
self.chip_barcode_recode[chipname].update({item['barcode'] for item in library_data['data']})
if newer:
self.chip_size[chipname] = library_data['size']
# if library_data['classification'] in ['扩增子', '不平衡文库', '单细胞文库以及甲基化']:
if library_data['is_balance_lib'] == '':
self.chip_speciallib_size[chipname] = library_data['size']
else:
self.chip_speciallib_size[chipname] = 0
else:
self.chip_size[chipname] += library_data['size']
if library_data['is_balance_lib'] == '':
self.chip_speciallib_size[chipname] += library_data['size']
self.chip_customer[chipname].add(library_data['customer'])
self.chip_classification[chipname].add(library_data['classification'])
def count_barcode_radio(self, data):
df = pd.DataFrame(data)
ratio_sites = dict()
is_not_balance_list = []
if df.empty:
return ratio_sites, is_not_balance_list
df['barcode'] = df['barcode'].str.slice(0, 16)
barcode_df = pd.DataFrame(df['barcode'].str.split('', expand=True).iloc[:, 1:-1].values,
columns=['T' + str(x) for x in range(16)]).join(df['data_needed'])
total = barcode_df['data_needed'].sum()
for i in range(16):
column = 'T' + str(i)
col_df = barcode_df.groupby(column).agg({'data_needed': 'sum'})
# 去掉N计数
if 'N' in col_df.index:
base_N_size = col_df.loc['N', 'data_needed']
col_df = col_df.drop('N')
else:
base_N_size = 0
col_df['ratio'] = (col_df['data_needed']) / (total - base_N_size)
ratio = col_df['ratio'].to_dict()
ratio_sites[i] = ratio
A, B, C, D, E, F = list(), list(), list(), list(), list(), list()
for decbase in ['A', 'T', 'C', 'G']:
if decbase not in ratio:
ratio[decbase] = 0
if ratio[decbase] >= 0.6:
A.append(decbase)
if 0.2 <= ratio[decbase] < 0.6:
B.append(decbase)
if 0.15 <= ratio[decbase] < 0.2:
C.append(decbase)
if 0.1 <= ratio[decbase] < 0.15:
D.append(decbase)
if 0.08 <= ratio[decbase] < 0.1:
E.append(decbase)
if ratio[decbase] < 0.08:
F.append(decbase)
A_num, B_num, C_num, D_num, E_num, F_num = len(A), len(B), len(C), len(D), len(E), len(F)
if not ((B_num + C_num + D_num == 4) or (F_num == 1 and (A_num + B_num) == 3) or (
E_num == 1 and D_num == 1 and (A_num + B_num + C_num) == 2) or (
E_num == 1 and (A_num + B_num + C_num) == 3)):
is_not_balance_list.append(
'%s位置,算出结果为 %s' % (i, ratio)
)
return ratio_sites, is_not_balance_list
def dec_barcode_radio(self, chipname):
data = self.index_assignments[chipname]
ratio_sites, is_not_balance_list = self.count_barcode_radio(data)
if is_not_balance_list:
desc = '\n'.join(is_not_balance_list)
self.return_log.append(f'芯片{chipname}有碱基不平衡:\n{desc}')
print(f'芯片{chipname}有碱基不平衡:\n{desc}')
@staticmethod
def level(row):
today_date = datetime.now()
# 将时间字符串转换为 datetime 对象
# mytime = datetime.strptime(row['time'], "%Y-%m-%d")
# mytime = row['time'].strftime("%Y-%m-%d")
mytime = row['time']
if row['拆分方式'] == '极致周期' or '极致' in row['拆分方式']:
return 2
# 判断日期是之前的还是之后的
if mytime < today_date:
return 3
if '加急' in row['priority']:
return 4
if '补测' in row['priority']:
return 5
else:
return 100
@staticmethod
def read_rule():
df = pd.read_excel(os.path.join(basedir, 'rule', 'exclusive_classfication.xlsx'))
newdf = pd.DataFrame()
newdf['c1'] = df['c2']
newdf['c2'] = df['c1']
res = pd.concat([df, newdf])
return res.reset_index()
def use_rule(self, chipname, classfication):
may_classfic = set(self.rule[self.rule['c1'] == classfication]['c2'])
if self.chip_customer[chipname].intersection(may_classfic):
return True
return False
def judge_data(self, chipname, library_data):
size = library_data['size']
# customer = library_data['customer']
library = library_data['library']
classification = library_data['classification']
is_balance_lib = library_data['is_balance_lib']
# 芯片大小不能超过设定限制
sizelimit = True
if self.chip_size[chipname] + size > self.data_limit:
sizelimit = False
# barcode有重复
notrepeatbarcode = True
if self.chip_barcode_recode[chipname].intersection({item['barcode'] for item in library_data['data']}):
notrepeatbarcode = False
# 互斥的文库
exclusive_classific = True
if self.use_rule(chipname, classification):
exclusive_classific = False
# 不平衡文库大于250G 不能添加
splibrary = True
if is_balance_lib == '' and self.chip_speciallib_size[chipname] + size > 250:
splibrary = False
# 碱基不平衡不过不添加,保证前面的数据, 在数据达到1200G的时候开始
base_balance = True
if self.chip_size[chipname] > 800:
current_data = copy.deepcopy(self.index_assignments[chipname])
new_data = library_data['data']
current_data.extend(new_data)
ratio_sites, is_not_balance_list = self.count_barcode_radio(current_data)
if is_not_balance_list:
base_balance = False
if sizelimit and notrepeatbarcode and exclusive_classific and splibrary and base_balance:
return True
return False
def assign_samples(self):
ori_library_data = list()
if '未测' not in self.ori_data.keys():
raise UserWarning('提供excel没有 未测 sheet ,请核查!')
ori_library_df = pd.DataFrame(self.ori_data['未测'])
need_col = ['#library', 'sublibrary', 'i5', 'i7', 'data_needed', 'real_data', 'customer',
'classification', 'priority', 'time', '拆分方式', 'barcode', 'is_balance_lib'
]
get_col = set(ori_library_df.columns)
unhave_col = set(need_col) - get_col
if unhave_col:
unhave_fom = '; '.join(unhave_col)
raise UserWarning(f'未测表里没有{unhave_fom} 表头,请核查!')
numeric_mask = pd.to_numeric(ori_library_df['data_needed'], errors='coerce').notna()
time_mask = pd.to_datetime(ori_library_df['time'], errors='coerce').notna()
ori_library_df['note'] = ''
ori_library_df.loc[~numeric_mask, 'note'] = 'data_needed 列非数字'
ori_library_df.loc[~time_mask, 'note'] = 'time 列非日期'
need_col.append('note')
no_ori_data = ori_library_df[~(numeric_mask & time_mask)]
self.no_assign_data.extend(no_ori_data.to_dict('records'))
# 使用布尔索引筛选出不是数字和非日期的行
ori_library_df = ori_library_df[(numeric_mask & time_mask)]
ori_library_df['level'] = ori_library_df.apply(self.level, axis=1)
# 极致客户有重复的把等级调到0防止放到了最后到了未测里
duplicate_name = ori_library_df[ori_library_df['level'] == 2].duplicated(subset='barcode', keep=False)
# 将 'level' 列的值改为 0
ori_library_df.loc[duplicate_name, 'level'] = 0
for library, library_df in ori_library_df.groupby('#library'):
size = library_df['data_needed'].sum()
flag = False
if size > (self.data_limit) / 2:
library_df['data_needed'] = library_df['data_needed'] / 2
flag = True
ori_library_data.append(dict(
library=library,
is_balance_lib=library_df['is_balance_lib'].values[0],
size=library_df['data_needed'].sum(),
split_method=library_df['拆分方式'].values[0],
time=library_df['time'].values[0],
level=library_df['level'].values[0],
customer=library_df['customer'].values[0],
classification=library_df['classification'].values[0],
data=library_df[need_col].to_dict('records')
))
if flag:
self.return_log.append(f'文库{library} 已做拆分处理, 请注意!!! ')
ori_library_data.append(dict(
library=library,
is_balance_lib=library_df['is_balance_lib'].values[0],
size=library_df['data_needed'].sum(),
split_method=library_df['拆分方式'].values[0],
time=library_df['time'].values[0],
level=library_df['level'].values[0],
customer=library_df['customer'].values[0],
classification=library_df['classification'].values[0],
data=library_df[need_col].to_dict('records')
))
ori_sort_data = sorted(ori_library_data, key=lambda x: (x['level'], x['time']))
i = 0
while ori_sort_data:
library_data = ori_sort_data[0]
chipname = f'chip{self.loc_chip_num}'
# 空白芯片直接添加
if chipname not in self.index_assignments:
self.add_new_data(chipname, library_data)
ori_sort_data.remove(library_data)
i += 1
continue
# 判断条件
if self.judge_data(chipname, library_data):
self.add_new_data(chipname, library_data, newer=False)
ori_sort_data.remove(library_data)
i += 1
else:
for j in range(len(ori_sort_data)):
newlibrary_data = ori_sort_data[j]
if self.judge_data(chipname, newlibrary_data):
ori_sort_data.remove(newlibrary_data)
i += 1
self.add_new_data(chipname, newlibrary_data, newer=False)
break
j += 1
else:
self.loc_chip_num += 1
if self.chip_size[chipname] > self.data_limit:
self.loc_chip_num += 1
def assign_again(self):
pass
def run(self):
# self.assign_samples()
try:
self.assign_samples()
except Exception as e:
self.return_log.append(f'T7排样出错 请联系!{e}')
self.index_assignments = {}
outputname = 'assignments_%s_%s' % (datetime.now().strftime("%m%d%H%M"), os.path.basename(self.path))
outputpath = os.path.join(self.output, 'result', outputname)
writer = pd.ExcelWriter(outputpath)
chip_loc = 1
librarynum = 0
for chip_idx, chip_assignments in self.index_assignments.items():
df = pd.DataFrame(chip_assignments)
df['time'] = df['time'].dt.strftime('%Y-%m-%d')
if df['data_needed'].sum() < 1600 or librarynum > self.librarynum:
self.no_assign_data.extend(df.to_dict('records'))
continue
librarynum += len(set(df['#library'].values))
if [method for method in df['拆分方式'].values if '极致' in method]:
addname = 'X'
else:
addname = ''
self.dec_barcode_radio(chip_idx)
df.to_excel(writer, sheet_name=addname + chip_idx, index=False)
chip_loc += 1
no_assign_df = pd.DataFrame(self.no_assign_data)
no_assign_df.to_excel(writer, sheet_name='未测', index=False)
if self.return_log:
pd.DataFrame(self.return_log).to_excel(writer, sheet_name='log', index=False)
writer.close()
return outputpath
if __name__ == '__main__':
start_time = time.time()
filepath = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'example', 'input排样表.xlsx')
# excel_file = 'example/input排样表.xlsx'
output_file = ''
layout = AutoLayout(filepath, output_file)
layout.run()
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间为:{execution_time}")
# server()