main
chaopower 2024-03-01 18:05:46 +08:00
parent 0f27e754d2
commit e8d9078262
1 changed files with 98 additions and 7 deletions

View File

@ -32,6 +32,7 @@ class AutoLayout:
self.chip_type = dict() self.chip_type = dict()
# 芯片barcode # 芯片barcode
self.chip_barcode_recode = defaultdict(set) self.chip_barcode_recode = defaultdict(set)
self.chip_barcodei7_recode = defaultdict(set)
# 芯片原始数据读取 # 芯片原始数据读取
self.ori_data = self.read_excel() self.ori_data = self.read_excel()
# 当前锚芯片 # 当前锚芯片
@ -63,19 +64,22 @@ class AutoLayout:
self.is_use_balance = is_use_balance self.is_use_balance = is_use_balance
self.is_use_max = is_use_max self.is_use_max = is_use_max
def count_barcode_radio(self, data): def count_barcode_radio(self, data, maxt=False):
df = pd.DataFrame(data) df = pd.DataFrame(data)
ratio_sites = dict() ratio_sites = dict()
is_not_balance_list = [] is_not_balance_list = []
if df.empty: if df.empty:
return ratio_sites, is_not_balance_list return ratio_sites, is_not_balance_list
s, e = 0, 16
df['barcode'] = df['barcode'].str.slice(0, 16) if maxt:
s, e = 8, 16
num = e - s
df['barcode'] = df['barcode'].str.slice(s, e)
barcode_df = pd.DataFrame(df['barcode'].str.split('', expand=True).iloc[:, 1:-1].values, barcode_df = pd.DataFrame(df['barcode'].str.split('', expand=True).iloc[:, 1:-1].values,
columns=['T' + str(x) for x in range(16)]).join(df['data_needed']) columns=['T' + str(x) for x in range(num)]).join(df['data_needed'])
total = barcode_df['data_needed'].sum() total = barcode_df['data_needed'].sum()
for i in range(16): for i in range(num):
column = 'T' + str(i) column = 'T' + str(i)
col_df = barcode_df.groupby(column).agg({'data_needed': 'sum'}) col_df = barcode_df.groupby(column).agg({'data_needed': 'sum'})
# 去掉N计数 # 去掉N计数
@ -137,6 +141,9 @@ class AutoLayout:
if '华大' in row['classification']: if '华大' in row['classification']:
return 1100 return 1100
if '超加急' in row['priority']:
return 1500
if row['拆分方式'] == '极致周期' or '极致' in row['拆分方式']: if row['拆分方式'] == '极致周期' or '极致' in row['拆分方式']:
return 2000 return 2000
@ -290,7 +297,7 @@ class AutoLayout:
return True return True
return False return False
def judge_data(self, chipname, library_data): def judge_data(self, chipname, library_data, max_barcode=False):
""" """
约束条件 约束条件
""" """
@ -354,6 +361,21 @@ class AutoLayout:
if (self.chip_speciallib_huada_size[chipname] > self.data_limit / 2) and ('华大' in classification): if (self.chip_speciallib_huada_size[chipname] > self.data_limit / 2) and ('华大' in classification):
use_huada = False use_huada = False
# 开启i5或者i7
if max_barcode:
base_balance = True
# 开启i7:
notrepeatbarcode = True
if self.chip_barcodei7_recode[chipname].intersection({item['i7'] for item in library_data['data']}):
notrepeatbarcode = False
if self.chip_size[chipname] > 900:
current_data = copy.deepcopy(self.index_assignments[chipname])
new_data = library_data['data']
current_data.extend(new_data)
ratio_sites, is_not_balance_list = self.count_barcode_radio(current_data, maxt=True)
if is_not_balance_list:
base_balance = False
if sizelimit and notrepeatbarcode and exclusive_classific and exclusive_customer and splibrary and base_balance and spmethylibrary and use_huada: if sizelimit and notrepeatbarcode and exclusive_classific and exclusive_customer and splibrary and base_balance and spmethylibrary and use_huada:
return True return True
return False return False
@ -491,6 +513,7 @@ class AutoLayout:
self.combinations_same_barcode() self.combinations_same_barcode()
self.ori_lib_data = sorted(self.ori_lib_data, key=lambda x: (x['level'], x['time'])) self.ori_lib_data = sorted(self.ori_lib_data, key=lambda x: (x['level'], x['time']))
# self.ori_lib_data = sorted(self.ori_lib_data, key=lambda x: (x['level'] != 100000, -x['size']))
while self.ori_lib_data: while self.ori_lib_data:
library_data = self.ori_lib_data[0] library_data = self.ori_lib_data[0]
@ -520,11 +543,76 @@ class AutoLayout:
if self.chip_size[chipname] > self.data_limit: if self.chip_size[chipname] > self.data_limit:
self.add_loc_num() self.add_loc_num()
def assign_again(self):
"""
剩余的数据开放i5或者i7再排下
"""
left_data = list()
no_need_chipname = list()
for chip_idx, chip_assignments in self.index_assignments.items():
if not chip_assignments:
continue
df = pd.DataFrame(chip_assignments)
if df['data_needed'].sum() < 1700:
left_data.extend(chip_assignments)
# del self.index_assignments[chip_idx]
no_need_chipname.append(chip_idx)
for chip_idx in no_need_chipname:
del self.index_assignments[chip_idx]
ori_library_df = pd.DataFrame(left_data)
ori_library_df['level'] = ori_library_df.apply(self.level, axis=1)
ori_lib_data = list()
for library, library_df in ori_library_df.groupby('#library'):
ori_lib_data.append(dict(
library=library,
is_balance_lib=library_df['is_balance_lib'].values[0],
size=library_df['data_needed'].sum(),
split_method=library_df['拆分方式'].values[0],
time=library_df['time'].values[0],
level=library_df['level'].values[0],
customer=library_df['customer'].values[0],
classification=library_df['classification'].values[0],
data=library_df[self.need_cols].to_dict('records')
))
ori_lib_data = sorted(ori_lib_data, key=lambda x: (x['level'], -x['size']))
self.loc_chip_num = 100
while ori_lib_data:
library_data = ori_lib_data[0]
chipname = f'chipB{self.loc_chip_num}'
# 空白芯片直接添加
if chipname not in self.index_assignments:
self.add_new_data(chipname, library_data)
ori_lib_data.remove(library_data)
continue
# 判断条件
if self.judge_data(chipname, library_data, max_barcode=True):
self.add_new_data(chipname, library_data, newer=False)
ori_lib_data.remove(library_data)
else:
for j in range(len(ori_lib_data)):
newlibrary_data = ori_lib_data[j]
if self.judge_data(chipname, newlibrary_data, max_barcode=True):
ori_lib_data.remove(newlibrary_data)
self.add_new_data(chipname, newlibrary_data, newer=False)
break
j += 1
else:
self.loc_chip_num += 1
if self.chip_size[chipname] > self.data_limit:
self.loc_chip_num += 1
def run(self): def run(self):
# print('# 测试代码') # print('# 测试代码')
# self.assign_samples() # self.assign_samples()
# self.assign_again()
try: try:
self.assign_samples() self.assign_samples()
self.assign_again()
except Exception as e: except Exception as e:
self.return_log.append(f'T7排样出错 请联系!{e}') self.return_log.append(f'T7排样出错 请联系!{e}')
self.index_assignments = {} self.index_assignments = {}
@ -544,6 +632,9 @@ class AutoLayout:
addname = 'X' addname = 'X'
else: else:
addname = '' addname = ''
other_name = ''
if 'chipB' in chip_idx and df['barcode'].duplicated().any():
other_name = 'i7'
if df['data_needed'].sum() < 1600 and not addname: if df['data_needed'].sum() < 1600 and not addname:
df['note'] = '排样数据量不足1600G' df['note'] = '排样数据量不足1600G'
@ -556,7 +647,7 @@ class AutoLayout:
librarynum += len(set(df['#library'].values)) librarynum += len(set(df['#library'].values))
self.dec_barcode_radio(chip_idx) self.dec_barcode_radio(chip_idx)
chipname = addname + chip_idx chipname = addname + chip_idx + other_name
sum_list = list() sum_list = list()
for library, library_df in df.groupby('#library'): for library, library_df in df.groupby('#library'):