new_sanwei
parent
abbef53bc3
commit
3f3c890eea
84
tools/t7.py
84
tools/t7.py
|
|
@ -521,8 +521,8 @@ class AutoLayout:
|
||||||
self.no_assign_data.extend(no_ori_data.to_dict('records'))
|
self.no_assign_data.extend(no_ori_data.to_dict('records'))
|
||||||
|
|
||||||
# 包lane的剔除
|
# 包lane的剔除
|
||||||
orderlane_mask = ori_library_df['productname'].str.contains('包lane')
|
# orderlane_mask = ori_library_df['lanepackcode'].str.contains('包lane')
|
||||||
|
orderlane_mask = ori_library_df['lanepackcode'] != ''
|
||||||
self.order_assign_data = ori_library_df[orderlane_mask].to_dict('records')
|
self.order_assign_data = ori_library_df[orderlane_mask].to_dict('records')
|
||||||
|
|
||||||
# 使用布尔索引筛选出不是数字和非日期的行,包lane的
|
# 使用布尔索引筛选出不是数字和非日期的行,包lane的
|
||||||
|
|
@ -549,46 +549,48 @@ class AutoLayout:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# 不平衡文库 大于250G 的数据 先进行拆分
|
# 不平衡文库 大于250G 的数据 先进行拆分
|
||||||
if is_balance_lib == '否' and size > 250:
|
# 取消 20240912
|
||||||
self.return_log.append(f'文库{library} 是不平衡文库, 数据为{size}, 大于250G, 已做拆分处理, 请注意!!! ')
|
# if is_balance_lib == '否' and size > 250:
|
||||||
data_needed = library_df['orderdatavolume'].copy()
|
# self.return_log.append(f'文库{library} 是不平衡文库, 数据为{size}, 大于250G, 已做拆分处理, 请注意!!! ')
|
||||||
for num in range(int(size), 0, -200):
|
# data_needed = library_df['orderdatavolume'].copy()
|
||||||
addnum = 200
|
# for num in range(int(size), 0, -200):
|
||||||
if num <= 200:
|
# addnum = 200
|
||||||
addnum = num
|
# if num <= 200:
|
||||||
library_df['orderdatavolume'] = (addnum / size) * data_needed
|
# addnum = num
|
||||||
|
# library_df['orderdatavolume'] = (addnum / size) * data_needed
|
||||||
|
#
|
||||||
|
# self.ori_lib_data.append(dict(
|
||||||
|
# library=library,
|
||||||
|
# sample_code=library_df['sampleCode'].values[0],
|
||||||
|
# is_balance_lib=library_df['librarybalancedflag'].values[0],
|
||||||
|
# size=library_df['orderdatavolume'].sum(),
|
||||||
|
# split_method=library_df['cycletype'].values[0],
|
||||||
|
# time=library_df['receivedtime'].values[0],
|
||||||
|
# level=1950,
|
||||||
|
# customer=library_df['companynamea'].values[0],
|
||||||
|
# classification=library_df['classification'].values[0],
|
||||||
|
# data=library_df.to_dict('records')
|
||||||
|
# ))
|
||||||
|
# self.split_lib.add(library)
|
||||||
|
# continue
|
||||||
|
|
||||||
self.ori_lib_data.append(dict(
|
# # 拆分处理 分为了2个大文库
|
||||||
library=library,
|
# 取消 20240912
|
||||||
sample_code=library_df['sampleCode'].values[0],
|
# if size > self.data_limit / 2:
|
||||||
is_balance_lib=library_df['librarybalancedflag'].values[0],
|
# library_df['orderdatavolume'] = library_df['orderdatavolume'] / 2
|
||||||
size=library_df['orderdatavolume'].sum(),
|
# self.return_log.append(f'文库{library} 已做拆分处理, 请注意!!! ')
|
||||||
split_method=library_df['cycletype'].values[0],
|
# self.ori_lib_data.append(dict(
|
||||||
time=library_df['receivedtime'].values[0],
|
# library=library,
|
||||||
level=1950,
|
# sample_code=library_df['sampleCode'].values[0],
|
||||||
customer=library_df['companynamea'].values[0],
|
# is_balance_lib=library_df['librarybalancedflag'].values[0],
|
||||||
classification=library_df['classification'].values[0],
|
# size=library_df['orderdatavolume'].sum(),
|
||||||
data=library_df.to_dict('records')
|
# split_method=library_df['cycletype'].values[0],
|
||||||
))
|
# time=library_df['receivedtime'].values[0],
|
||||||
self.split_lib.add(library)
|
# level=library_df['level'].values[0],
|
||||||
continue
|
# customer=library_df['companynamea'].values[0],
|
||||||
|
# classification=library_df['classification'].values[0],
|
||||||
# 拆分处理 分为了2个大文库
|
# data=library_df.to_dict('records')
|
||||||
if size > self.data_limit / 2:
|
# ))
|
||||||
library_df['orderdatavolume'] = library_df['orderdatavolume'] / 2
|
|
||||||
self.return_log.append(f'文库{library} 已做拆分处理, 请注意!!! ')
|
|
||||||
self.ori_lib_data.append(dict(
|
|
||||||
library=library,
|
|
||||||
sample_code=library_df['sampleCode'].values[0],
|
|
||||||
is_balance_lib=library_df['librarybalancedflag'].values[0],
|
|
||||||
size=library_df['orderdatavolume'].sum(),
|
|
||||||
split_method=library_df['cycletype'].values[0],
|
|
||||||
time=library_df['receivedtime'].values[0],
|
|
||||||
level=library_df['level'].values[0],
|
|
||||||
customer=library_df['companynamea'].values[0],
|
|
||||||
classification=library_df['classification'].values[0],
|
|
||||||
data=library_df.to_dict('records')
|
|
||||||
))
|
|
||||||
|
|
||||||
self.ori_lib_data.append(dict(
|
self.ori_lib_data.append(dict(
|
||||||
library=library,
|
library=library,
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue