添加 i5 i7

main
chaopower 2024-03-04 17:10:22 +08:00
parent 5ed962f9c3
commit 29a651f874
1 changed files with 74 additions and 61 deletions

View File

@ -33,6 +33,7 @@ class AutoLayout:
# 芯片barcode
self.chip_barcode_recode = defaultdict(set)
self.chip_barcodei7_recode = defaultdict(set)
self.chip_barcodei5_recode = defaultdict(set)
# 芯片原始数据读取
self.ori_data = self.read_excel()
# 当前锚芯片
@ -64,15 +65,53 @@ class AutoLayout:
self.is_use_balance = is_use_balance
self.is_use_max = is_use_max
def count_barcode_radio(self, data, maxt=False):
@staticmethod
def read_cols():
df = pd.read_excel(os.path.join(basedir, 'rule', 'columns.xlsx'))
cols = list(df['cols'].values)
return cols
def read_excel(self):
"""
原始数据处理
:return:
"""
merge = pd.read_excel(self.path, None)
ori_data = dict()
for name, sheet in merge.items():
sheet.fillna('', inplace=True)
ori_data[name] = sheet.to_dict('records')
return ori_data
@staticmethod
def read_rule():
df = pd.read_excel(os.path.join(basedir, 'rule', 'exclusive_classfication.xlsx'))
newdf = pd.DataFrame()
newdf['c1'] = df['c2']
newdf['c2'] = df['c1']
res = pd.concat([df, newdf])
return res.reset_index()
@staticmethod
def read_rule_exclusive_customer():
df = pd.read_excel(os.path.join(basedir, 'rule', 'exclusive_customer.xlsx'))
newdf = pd.DataFrame()
newdf['customer1'] = df['customer2']
newdf['customer2'] = df['customer1']
res = pd.concat([df, newdf])
return res.reset_index()
def count_barcode_radio(self, data, maxt=''):
df = pd.DataFrame(data)
ratio_sites = dict()
is_not_balance_list = []
if df.empty:
return ratio_sites, is_not_balance_list
s, e = 0, 16
if maxt:
if maxt == 'i7':
s, e = 8, 16
if maxt == 'i5':
s, e = 0, 8
num = e - s
df['barcode'] = df['barcode'].str.slice(s, e)
barcode_df = pd.DataFrame(df['barcode'].str.split('', expand=True).iloc[:, 1:-1].values,
@ -161,42 +200,6 @@ class AutoLayout:
else:
return 100000
@staticmethod
def read_rule():
df = pd.read_excel(os.path.join(basedir, 'rule', 'exclusive_classfication.xlsx'))
newdf = pd.DataFrame()
newdf['c1'] = df['c2']
newdf['c2'] = df['c1']
res = pd.concat([df, newdf])
return res.reset_index()
@staticmethod
def read_rule_exclusive_customer():
df = pd.read_excel(os.path.join(basedir, 'rule', 'exclusive_customer.xlsx'))
newdf = pd.DataFrame()
newdf['customer1'] = df['customer2']
newdf['customer2'] = df['customer1']
res = pd.concat([df, newdf])
return res.reset_index()
@staticmethod
def read_cols():
df = pd.read_excel(os.path.join(basedir, 'rule', 'columns.xlsx'))
cols = list(df['cols'].values)
return cols
def read_excel(self):
"""
原始数据处理
:return:
"""
merge = pd.read_excel(self.path, None)
ori_data = dict()
for name, sheet in merge.items():
sheet.fillna('', inplace=True)
ori_data[name] = sheet.to_dict('records')
return ori_data
def combinations_same_barcode(self):
"""
barcode 有重复的极致样本 进行排列组合汇集成新的可能性
@ -250,6 +253,8 @@ class AutoLayout:
"""
self.index_assignments[chipname].extend(library_data['data'])
self.chip_barcode_recode[chipname].update({item['barcode'] for item in library_data['data']})
self.chip_barcodei7_recode[chipname].update({item['i7'] for item in library_data['data']})
self.chip_barcodei5_recode[chipname].update({item['i5'] for item in library_data['data']})
self.chip_customer[chipname].add(library_data['customer'])
self.chip_classification[chipname].add(library_data['classification'])
@ -280,7 +285,7 @@ class AutoLayout:
if library_data['is_balance_lib'] == '甲基化':
self.chip_methylib_size[chipname] += library_data['size']
if 'nextera' in library_data['classification'].lower():
self.chip_speciallib_huada_size[chipname] += library_data['size']
self.chip_speciallib_nextera_size[chipname] += library_data['size']
if '华大' in library_data['classification']:
self.chip_speciallib_huada_size[chipname] += library_data['size']
@ -297,7 +302,7 @@ class AutoLayout:
return True
return False
def judge_data(self, chipname, library_data, max_barcode=False):
def judge_data(self, chipname, library_data, max_barcode='all'):
"""
约束条件
"""
@ -362,17 +367,23 @@ class AutoLayout:
use_huada = False
# 开启i5或者i7
if max_barcode:
if max_barcode != 'all':
base_balance = True
# 开启i7:
notrepeatbarcode = True
if self.chip_barcodei7_recode[chipname].intersection({item['i7'] for item in library_data['data']}):
if self.chip_barcodei7_recode[chipname].intersection({item['i7'] for item in library_data['data']}) and max_barcode == 'i7':
notrepeatbarcode = False
if self.chip_barcodei5_recode[chipname].intersection({item['i5'] for item in library_data['data']}) and max_barcode == 'i5':
notrepeatbarcode = False
#是个N的取消
if ('N' * 8 in {item['i5'] for item in library_data['data']}) and max_barcode == 'i5':
notrepeatbarcode = False
if ('N' * 8 in {item['i7'] for item in library_data['data']}) and max_barcode == 'i7':
notrepeatbarcode = False
if self.chip_size[chipname] > 900:
current_data = copy.deepcopy(self.index_assignments[chipname])
new_data = library_data['data']
current_data.extend(new_data)
ratio_sites, is_not_balance_list = self.count_barcode_radio(current_data, maxt=True)
ratio_sites, is_not_balance_list = self.count_barcode_radio(current_data, maxt=max_barcode)
if is_not_balance_list:
base_balance = False
@ -380,12 +391,12 @@ class AutoLayout:
return True
return False
def add_loc_num(self):
def add_loc_num(self, chipname):
"""
锚定芯片号增加
"""
# 有nextera, 华大文库 必须满足大于50G 到了芯片结算
chipname = f'chip{self.loc_chip_num}'
# chipname = f'chip{self.loc_chip_num}'
nextera_size = self.chip_speciallib_nextera_size[chipname]
huada_size = self.chip_speciallib_huada_size[chipname]
flag = True
@ -409,7 +420,7 @@ class AutoLayout:
huada_barcode = set()
no_huada_data = list()
for libdata in self.index_assignments[chipname]:
if libdata['classification'] != '华大':
if '华大' not in libdata['classification']:
no_huada_data.append(libdata)
else:
self.no_assign_data.append(libdata)
@ -538,14 +549,14 @@ class AutoLayout:
break
j += 1
else:
self.add_loc_num()
self.add_loc_num(chipname)
if self.chip_size[chipname] > self.data_limit:
self.add_loc_num()
self.add_loc_num(chipname)
def assign_again(self):
def assign_again_size(self, max_barcode='all'):
"""
剩余的数据开放i5或者i7再排下
剩余的数据
"""
left_data = list()
no_need_chipname = list()
@ -555,7 +566,6 @@ class AutoLayout:
df = pd.DataFrame(chip_assignments)
if df['data_needed'].sum() < 1700:
left_data.extend(chip_assignments)
# del self.index_assignments[chip_idx]
no_need_chipname.append(chip_idx)
for chip_idx in no_need_chipname:
del self.index_assignments[chip_idx]
@ -576,11 +586,11 @@ class AutoLayout:
data=library_df[self.need_cols].to_dict('records')
))
ori_lib_data = sorted(ori_lib_data, key=lambda x: (x['level'], -x['size']))
ori_lib_data = sorted(ori_lib_data, key=lambda x: (x['level'], x['time'], -x['size']))
self.loc_chip_num = 100
while ori_lib_data:
library_data = ori_lib_data[0]
chipname = f'chipB{self.loc_chip_num}'
chipname = f'chipB{self.loc_chip_num}_{max_barcode}' if max_barcode != 'all' else f'chipB{self.loc_chip_num}'
# 空白芯片直接添加
if chipname not in self.index_assignments:
@ -589,22 +599,22 @@ class AutoLayout:
continue
# 判断条件
if self.judge_data(chipname, library_data, max_barcode=True):
if self.judge_data(chipname, library_data, max_barcode=max_barcode):
self.add_new_data(chipname, library_data, newer=False)
ori_lib_data.remove(library_data)
else:
for j in range(len(ori_lib_data)):
newlibrary_data = ori_lib_data[j]
if self.judge_data(chipname, newlibrary_data, max_barcode=True):
if self.judge_data(chipname, newlibrary_data, max_barcode=max_barcode):
ori_lib_data.remove(newlibrary_data)
self.add_new_data(chipname, newlibrary_data, newer=False)
break
j += 1
else:
self.loc_chip_num += 1
self.add_loc_num(chipname)
if self.chip_size[chipname] > self.data_limit:
self.loc_chip_num += 1
self.add_loc_num(chipname)
def run(self):
# print('# 测试代码')
@ -612,7 +622,10 @@ class AutoLayout:
# self.assign_again()
try:
self.assign_samples()
self.assign_again()
self.assign_again_size()
# self.assign_again_size(max_barcode='i7')
# self.assign_again_size(max_barcode='i5')
# self.assign_again_size()
except Exception as e:
self.return_log.append(f'T7排样出错 请联系!{e}')
self.index_assignments = {}
@ -633,8 +646,8 @@ class AutoLayout:
else:
addname = ''
other_name = ''
if 'chipB' in chip_idx and df['barcode'].duplicated().any():
other_name = '_i7'
# if 'chipB' in chip_idx and df['barcode'].duplicated().any():
# other_name = '_i7'
if df['data_needed'].sum() < 1600 and not addname:
df['note'] = '排样数据量不足1600G'