layout/tools/t7.py

522 lines
21 KiB
Python
Raw Normal View History

2023-12-20 17:06:48 +08:00
import copy
2023-12-07 17:47:53 +08:00
import os
import time
2023-06-27 13:01:44 +08:00
from collections import defaultdict
from datetime import datetime
2023-12-07 17:47:53 +08:00
import pandas as pd
from tools.common import basedir, log
2023-06-27 13:01:44 +08:00
2024-01-19 17:57:14 +08:00
# 定义一个格式化函数
def format_date(date):
2024-01-30 14:31:18 +08:00
return date.strftime('%Y-%m-%d')
2023-06-27 13:01:44 +08:00
class AutoLayout:
"""
自动化派样
"""
2024-02-05 17:13:32 +08:00
def __init__(self, path, librarynum, is_use_balance=1, is_use_max=0, output=basedir, data_limit=1750):
2023-06-27 13:01:44 +08:00
self.path = path
self.output = output
2024-01-02 13:53:43 +08:00
self.librarynum = int(librarynum)
2023-06-27 13:01:44 +08:00
self.data_limit = data_limit
self.index_assignments = defaultdict(list)
# 芯片数量量大小
self.chip_size = dict()
# 芯片是否极致
self.chip_type = dict()
# 芯片barcode
self.chip_barcode_recode = defaultdict(set)
# 芯片原始数据读取
self.ori_data = self.read_excel()
# 当前锚芯片
self.loc_chip_num = 1
# 芯片客户
self.chip_customer = defaultdict(set)
2023-12-07 17:47:53 +08:00
# 文库
self.chip_classification = defaultdict(set)
2023-06-27 13:01:44 +08:00
self.rule = self.read_rule()
2024-02-05 17:13:32 +08:00
# 不平衡文库
2023-06-27 13:01:44 +08:00
self.chip_speciallib_size = dict()
2024-01-16 18:02:24 +08:00
2024-02-05 17:13:32 +08:00
# 甲基化文库
self.chip_methylib_size = dict()
2024-01-16 18:02:24 +08:00
# Nextera 文库大小
self.chip_speciallib_nextera_size = dict()
2024-02-05 17:13:32 +08:00
# 华大 文库
self.chip_speciallib_huada_size = dict()
2024-01-16 18:02:24 +08:00
2023-06-27 13:01:44 +08:00
self.logger = log(os.path.basename(f'{path}.txt'))
self.return_log = list()
2023-12-07 17:47:53 +08:00
self.no_assign_data = list()
2024-02-05 17:13:32 +08:00
self.ori_lib_data = list()
2024-01-30 14:31:18 +08:00
self.need_cols = self.read_cols()
2023-06-27 13:01:44 +08:00
2024-02-05 17:13:32 +08:00
self.is_use_balance = is_use_balance
self.is_use_max = is_use_max
2024-01-16 18:02:24 +08:00
2024-02-05 17:13:32 +08:00
def count_barcode_radio(self, data):
2023-06-27 13:01:44 +08:00
df = pd.DataFrame(data)
2023-12-20 17:06:48 +08:00
ratio_sites = dict()
is_not_balance_list = []
if df.empty:
return ratio_sites, is_not_balance_list
2023-12-07 17:47:53 +08:00
df['barcode'] = df['barcode'].str.slice(0, 16)
2023-06-27 13:01:44 +08:00
barcode_df = pd.DataFrame(df['barcode'].str.split('', expand=True).iloc[:, 1:-1].values,
columns=['T' + str(x) for x in range(16)]).join(df['data_needed'])
total = barcode_df['data_needed'].sum()
2023-12-20 17:06:48 +08:00
2023-06-27 13:01:44 +08:00
for i in range(16):
column = 'T' + str(i)
col_df = barcode_df.groupby(column).agg({'data_needed': 'sum'})
# 去掉N计数
if 'N' in col_df.index:
2024-01-30 14:31:18 +08:00
base_n_size = col_df.loc['N', 'data_needed']
2023-06-27 13:01:44 +08:00
col_df = col_df.drop('N')
else:
2024-01-30 14:31:18 +08:00
base_n_size = 0
col_df['ratio'] = (col_df['data_needed']) / (total - base_n_size)
2023-06-27 13:01:44 +08:00
ratio = col_df['ratio'].to_dict()
2023-12-20 17:06:48 +08:00
ratio_sites[i] = ratio
2024-02-05 17:13:32 +08:00
A, B, C, D, E, F, G = list(), list(), list(), list(), list(), list(), list()
2023-06-27 13:01:44 +08:00
for decbase in ['A', 'T', 'C', 'G']:
if decbase not in ratio:
ratio[decbase] = 0
2023-12-07 17:47:53 +08:00
if ratio[decbase] >= 0.6:
A.append(decbase)
if 0.2 <= ratio[decbase] < 0.6:
B.append(decbase)
2023-12-20 17:06:48 +08:00
if 0.15 <= ratio[decbase] < 0.2:
2023-12-07 17:47:53 +08:00
C.append(decbase)
2023-12-20 17:06:48 +08:00
if 0.1 <= ratio[decbase] < 0.15:
2023-12-07 17:47:53 +08:00
D.append(decbase)
2023-12-20 17:06:48 +08:00
if 0.08 <= ratio[decbase] < 0.1:
E.append(decbase)
if ratio[decbase] < 0.08:
F.append(decbase)
2024-02-05 17:13:32 +08:00
# 新增一个碱基可行规则
if 0.125 <= ratio[decbase] <= 0.625:
G.append(decbase)
A_num, B_num, C_num, D_num, E_num, F_num, G_num = len(A), len(B), len(C), len(D), len(E), len(F), len(G)
2023-12-20 17:06:48 +08:00
if not ((B_num + C_num + D_num == 4) or (F_num == 1 and (A_num + B_num) == 3) or (
E_num == 1 and D_num == 1 and (A_num + B_num + C_num) == 2) or (
2024-02-05 17:13:32 +08:00
E_num == 1 and (A_num + B_num + C_num) == 3) or (
F_num == 1 and G_num == 3 and self.is_use_max)):
2023-06-27 13:01:44 +08:00
is_not_balance_list.append(
2023-12-20 17:06:48 +08:00
'%s位置,算出结果为 %s' % (i, ratio)
2023-06-27 13:01:44 +08:00
)
2023-12-20 17:06:48 +08:00
return ratio_sites, is_not_balance_list
2023-06-27 13:01:44 +08:00
2023-12-20 17:06:48 +08:00
def dec_barcode_radio(self, chipname):
data = self.index_assignments[chipname]
ratio_sites, is_not_balance_list = self.count_barcode_radio(data)
if is_not_balance_list:
desc = '\n'.join(is_not_balance_list)
self.return_log.append(f'芯片{chipname}有碱基不平衡:\n{desc}')
print(f'芯片{chipname}有碱基不平衡:\n{desc}')
2023-06-27 13:01:44 +08:00
@staticmethod
def level(row):
2023-12-07 17:47:53 +08:00
today_date = datetime.now()
2024-01-16 18:02:24 +08:00
if 'nextera' in row['classification'].lower():
2024-02-05 17:13:32 +08:00
return 10
if '华大' in row['classification']:
return 11
2024-01-16 18:02:24 +08:00
2023-12-07 17:47:53 +08:00
if row['拆分方式'] == '极致周期' or '极致' in row['拆分方式']:
2024-02-05 17:13:32 +08:00
return 20
2023-06-27 13:01:44 +08:00
2024-01-16 18:02:24 +08:00
mytime = row['time']
2023-12-07 17:47:53 +08:00
# 判断日期是之前的还是之后的
if mytime < today_date:
2024-02-05 17:13:32 +08:00
return 30
2023-06-27 13:01:44 +08:00
2023-12-07 17:47:53 +08:00
if '加急' in row['priority']:
2024-02-05 17:13:32 +08:00
return 40
2023-06-27 13:01:44 +08:00
2023-12-07 17:47:53 +08:00
if '补测' in row['priority']:
2024-02-05 17:13:32 +08:00
return 50
2023-06-27 13:01:44 +08:00
else:
2024-02-05 17:13:32 +08:00
return 1000
2023-06-27 13:01:44 +08:00
@staticmethod
def read_rule():
2023-12-07 17:47:53 +08:00
df = pd.read_excel(os.path.join(basedir, 'rule', 'exclusive_classfication.xlsx'))
2023-06-27 13:01:44 +08:00
newdf = pd.DataFrame()
2023-12-07 17:47:53 +08:00
newdf['c1'] = df['c2']
newdf['c2'] = df['c1']
res = pd.concat([df, newdf])
return res.reset_index()
2024-01-30 14:31:18 +08:00
@staticmethod
def read_cols():
df = pd.read_excel(os.path.join(basedir, 'rule', 'columns.xlsx'))
cols = list(df['cols'].values)
return cols
2024-02-05 17:13:32 +08:00
def read_excel(self):
"""
原始数据处理
:return:
"""
merge = pd.read_excel(self.path, None)
ori_data = dict()
for name, sheet in merge.items():
sheet.fillna('', inplace=True)
ori_data[name] = sheet.to_dict('records')
return ori_data
def add_new_data(self, chipname, library_data, newer=True):
"""
增加新数据到已知芯片上
:param chipname:
:param library_data:
:param newer:
:return:
"""
self.index_assignments[chipname].extend(library_data['data'])
self.chip_barcode_recode[chipname].update({item['barcode'] for item in library_data['data']})
self.chip_customer[chipname].add(library_data['customer'])
self.chip_classification[chipname].add(library_data['classification'])
if newer:
self.chip_size[chipname] = library_data['size']
# if library_data['classification'] in ['扩增子', '不平衡文库', '单细胞文库以及甲基化']:
if library_data['is_balance_lib'] == '':
self.chip_speciallib_size[chipname] = library_data['size']
elif library_data['is_balance_lib'] == '甲基化':
self.chip_methylib_size[chipname] = library_data['size']
else:
self.chip_speciallib_size[chipname] = 0
self.chip_methylib_size[chipname] = 0
if 'nextera' in library_data['classification'].lower():
self.chip_speciallib_nextera_size[chipname] = library_data['size']
else:
self.chip_speciallib_nextera_size[chipname] = 0
if '华大' in library_data['classification']:
self.chip_speciallib_huada_size[chipname] = library_data['size']
else:
self.chip_speciallib_huada_size[chipname] = 0
else:
self.chip_size[chipname] += library_data['size']
if library_data['is_balance_lib'] == '':
self.chip_speciallib_size[chipname] += library_data['size']
if library_data['is_balance_lib'] == '甲基化':
self.chip_methylib_size[chipname] += library_data['size']
if 'nextera' in library_data['classification'].lower():
self.chip_speciallib_huada_size[chipname] += library_data['size']
if '华大' in library_data['classification']:
self.chip_speciallib_huada_size[chipname] += library_data['size']
2023-12-07 17:47:53 +08:00
def use_rule(self, chipname, classfication):
2023-12-14 10:26:34 +08:00
may_classfic = set(self.rule[self.rule['c1'] == classfication]['c2'])
2023-12-07 17:47:53 +08:00
if self.chip_customer[chipname].intersection(may_classfic):
2023-06-27 13:01:44 +08:00
return True
return False
def judge_data(self, chipname, library_data):
2024-02-05 17:13:32 +08:00
"""
约束条件
"""
2023-06-27 13:01:44 +08:00
size = library_data['size']
2023-12-07 17:47:53 +08:00
classification = library_data['classification']
2024-01-02 13:53:43 +08:00
is_balance_lib = library_data['is_balance_lib']
2023-06-27 13:01:44 +08:00
# 芯片大小不能超过设定限制
sizelimit = True
if self.chip_size[chipname] + size > self.data_limit:
sizelimit = False
2023-12-20 17:06:48 +08:00
2023-06-27 13:01:44 +08:00
# barcode有重复
notrepeatbarcode = True
if self.chip_barcode_recode[chipname].intersection({item['barcode'] for item in library_data['data']}):
notrepeatbarcode = False
2023-12-07 17:47:53 +08:00
# 互斥的文库
2023-12-14 10:26:34 +08:00
exclusive_classific = True
2023-12-07 17:47:53 +08:00
if self.use_rule(chipname, classification):
2023-12-14 10:26:34 +08:00
exclusive_classific = False
2023-12-07 17:47:53 +08:00
2024-01-02 13:53:43 +08:00
# 不平衡文库大于250G 不能添加
2023-06-27 13:01:44 +08:00
splibrary = True
2024-01-02 13:53:43 +08:00
if is_balance_lib == '' and self.chip_speciallib_size[chipname] + size > 250:
2023-06-27 13:01:44 +08:00
splibrary = False
2023-12-20 17:06:48 +08:00
2024-02-05 17:13:32 +08:00
# 甲基化文库不能大于250G
spmethylibrary = True
if is_balance_lib == '甲基化' and self.chip_methylib_size[chipname] + size > 250:
spmethylibrary = False
# 不使用平衡文库
if not self.is_use_balance:
splibrary = True
spmethylibrary = True
2023-12-20 17:06:48 +08:00
# 碱基不平衡不过不添加,保证前面的数据, 在数据达到1200G的时候开始
base_balance = True
2024-02-05 17:13:32 +08:00
if self.chip_size[chipname] > 900:
2023-12-20 17:06:48 +08:00
current_data = copy.deepcopy(self.index_assignments[chipname])
new_data = library_data['data']
current_data.extend(new_data)
ratio_sites, is_not_balance_list = self.count_barcode_radio(current_data)
if is_not_balance_list:
base_balance = False
2024-02-05 17:13:32 +08:00
if sizelimit and notrepeatbarcode and exclusive_classific and splibrary and base_balance and spmethylibrary:
2023-06-27 13:01:44 +08:00
return True
return False
2024-01-16 18:02:24 +08:00
def add_loc_num(self):
2024-02-05 17:13:32 +08:00
"""
锚定芯片号增加
"""
# 有nextera, 华大文库 必须满足大于50G
2024-01-18 18:31:13 +08:00
chipname = f'chip{self.loc_chip_num}'
nextera_size = self.chip_speciallib_nextera_size[chipname]
2024-02-05 17:13:32 +08:00
huada_size = self.chip_speciallib_huada_size[chipname]
flag = True
if 0 < nextera_size < 50:
2024-01-16 18:02:24 +08:00
# 有nextera文库但是不满足50G 去除
nextary_barcode = set()
no_nextary_data = list()
2024-01-18 18:31:13 +08:00
for libdata in self.index_assignments[chipname]:
2024-01-16 18:02:24 +08:00
if libdata['classification'].lower() != 'nextera':
no_nextary_data.append(libdata)
else:
2024-01-18 18:31:13 +08:00
self.no_assign_data.append(libdata)
nextary_barcode.update(libdata['barcode'])
self.index_assignments[chipname] = no_nextary_data
self.chip_barcode_recode[chipname] -= nextary_barcode
self.chip_speciallib_nextera_size[chipname] = 0
2024-02-05 17:13:32 +08:00
self.chip_size[chipname] -= nextera_size
flag = False
if 0 < huada_size < 50:
# 有华大文库但是不满足50G 去除
huada_barcode = set()
no_huada_data = list()
for libdata in self.index_assignments[chipname]:
if libdata['classification'] != '华大':
no_huada_data.append(libdata)
else:
self.no_assign_data.append(libdata)
huada_barcode.update(libdata['barcode'])
self.index_assignments[chipname] = no_huada_data
self.chip_barcode_recode[chipname] -= huada_barcode
self.chip_speciallib_huada_size[chipname] = 0
self.chip_size[chipname] -= huada_size
flag = False
if flag:
self.loc_chip_num += 1
2024-01-16 18:02:24 +08:00
2023-06-27 13:01:44 +08:00
def assign_samples(self):
ori_library_data = list()
2023-12-07 17:47:53 +08:00
if '未测' not in self.ori_data.keys():
raise UserWarning('提供excel没有 未测 sheet ,请核查!')
2023-06-27 13:01:44 +08:00
ori_library_df = pd.DataFrame(self.ori_data['未测'])
2023-12-07 17:47:53 +08:00
2024-02-05 17:13:32 +08:00
# 检查提供excel 是否有必须表头
2023-12-07 17:47:53 +08:00
get_col = set(ori_library_df.columns)
2024-01-30 14:31:18 +08:00
unhave_col = set(self.need_cols) - get_col
2023-12-07 17:47:53 +08:00
if unhave_col:
2024-02-05 17:13:32 +08:00
unhave_from = '; '.join(unhave_col)
raise UserWarning(f'未测表里没有{unhave_from} 表头,请核查!')
2023-12-07 17:47:53 +08:00
2024-02-05 17:13:32 +08:00
# 数据标准格式
2023-12-07 17:47:53 +08:00
numeric_mask = pd.to_numeric(ori_library_df['data_needed'], errors='coerce').notna()
time_mask = pd.to_datetime(ori_library_df['time'], errors='coerce').notna()
2024-01-16 18:02:24 +08:00
# 添加处理status列的逻辑
status_mask = ori_library_df['status'] == '暂不排样'
2024-02-05 17:13:32 +08:00
# 非正常barcode
barcode_mask = ori_library_df['barcode'].str.len() != 16
2023-12-07 17:47:53 +08:00
ori_library_df['note'] = ''
ori_library_df.loc[~numeric_mask, 'note'] = 'data_needed 列非数字'
ori_library_df.loc[~time_mask, 'note'] = 'time 列非日期'
2024-01-16 18:02:24 +08:00
ori_library_df.loc[status_mask, 'note'] = '暂不排样'
2024-02-05 17:40:29 +08:00
ori_library_df.loc[barcode_mask, 'note'] = '非16位barcode'
2023-12-07 17:47:53 +08:00
2024-02-05 17:13:32 +08:00
no_ori_data = ori_library_df[~(numeric_mask & time_mask) | status_mask | barcode_mask]
2024-01-30 14:31:18 +08:00
2023-12-14 10:26:34 +08:00
self.no_assign_data.extend(no_ori_data.to_dict('records'))
2024-02-05 17:13:32 +08:00
# 使用布尔索引筛选出不是数字和非日期的行,并且不是暂不排样的行
ori_library_df = ori_library_df[(numeric_mask & time_mask) & ~status_mask & ~barcode_mask]
# 某个客户的检测的数据超过1个T就单独处理
# summary = ori_library_df.groupby('customer').agg({'data_needed': 'sum'})
# print(summary)
2024-01-16 18:02:24 +08:00
2024-02-05 17:13:32 +08:00
# 时间格式化
ori_library_df['time'] = pd.to_datetime(ori_library_df['time'], errors='coerce')
2023-06-27 13:01:44 +08:00
ori_library_df['level'] = ori_library_df.apply(self.level, axis=1)
2024-01-02 13:53:43 +08:00
2024-02-05 17:13:32 +08:00
# 极致客户有重复的把等级调到0防止放到了最后到了未测里
ori_library_df.loc[
(ori_library_df.duplicated(subset='barcode')) & (ori_library_df['level'] == 20), 'level'] = 19
2024-01-02 13:53:43 +08:00
2023-06-27 13:01:44 +08:00
for library, library_df in ori_library_df.groupby('#library'):
2024-01-02 13:53:43 +08:00
size = library_df['data_needed'].sum()
2024-01-19 17:57:14 +08:00
# 文库内部有重复
if len(library_df['barcode'].values) > len(set(library_df['barcode'].values)):
library_df['note'] = '文库内部有重复'
self.no_assign_data.extend(library_df.to_dict('records'))
continue
2024-02-05 17:13:32 +08:00
# 拆分处理
2024-01-02 13:53:43 +08:00
flag = False
if size > (self.data_limit) / 2:
library_df['data_needed'] = library_df['data_needed'] / 2
flag = True
2023-06-27 13:01:44 +08:00
ori_library_data.append(dict(
library=library,
2024-01-02 13:53:43 +08:00
is_balance_lib=library_df['is_balance_lib'].values[0],
2023-06-27 13:01:44 +08:00
size=library_df['data_needed'].sum(),
2023-12-07 17:47:53 +08:00
split_method=library_df['拆分方式'].values[0],
2023-06-27 13:01:44 +08:00
time=library_df['time'].values[0],
level=library_df['level'].values[0],
customer=library_df['customer'].values[0],
classification=library_df['classification'].values[0],
2024-01-30 14:31:18 +08:00
data=library_df[self.need_cols].to_dict('records')
2023-06-27 13:01:44 +08:00
))
2024-01-02 13:53:43 +08:00
2024-02-05 17:13:32 +08:00
# 拆分对半
2024-01-02 13:53:43 +08:00
if flag:
self.return_log.append(f'文库{library} 已做拆分处理, 请注意!!! ')
ori_library_data.append(dict(
library=library,
is_balance_lib=library_df['is_balance_lib'].values[0],
size=library_df['data_needed'].sum(),
split_method=library_df['拆分方式'].values[0],
time=library_df['time'].values[0],
level=library_df['level'].values[0],
customer=library_df['customer'].values[0],
classification=library_df['classification'].values[0],
2024-01-30 14:31:18 +08:00
data=library_df[self.need_cols].to_dict('records')
2024-01-02 13:53:43 +08:00
))
2024-02-05 17:13:32 +08:00
self.ori_lib_data = sorted(ori_library_data, key=lambda x: (x['level'], x['time']))
2023-06-27 13:01:44 +08:00
2024-02-05 17:13:32 +08:00
# self.ori_lib_data = ori_sort_data
while self.ori_lib_data:
library_data = self.ori_lib_data[0]
2023-06-27 13:01:44 +08:00
chipname = f'chip{self.loc_chip_num}'
# 空白芯片直接添加
if chipname not in self.index_assignments:
self.add_new_data(chipname, library_data)
2024-02-05 17:13:32 +08:00
self.ori_lib_data.remove(library_data)
2023-06-27 13:01:44 +08:00
continue
# 判断条件
if self.judge_data(chipname, library_data):
self.add_new_data(chipname, library_data, newer=False)
2024-02-05 17:13:32 +08:00
self.ori_lib_data.remove(library_data)
2023-06-27 13:01:44 +08:00
else:
2024-02-05 17:13:32 +08:00
for j in range(len(self.ori_lib_data)):
newlibrary_data = self.ori_lib_data[j]
2023-06-27 13:01:44 +08:00
if self.judge_data(chipname, newlibrary_data):
2024-02-05 17:13:32 +08:00
self.ori_lib_data.remove(newlibrary_data)
2023-06-27 13:01:44 +08:00
self.add_new_data(chipname, newlibrary_data, newer=False)
break
j += 1
else:
2024-01-16 18:02:24 +08:00
self.add_loc_num()
2024-02-05 17:13:32 +08:00
2023-12-14 10:26:34 +08:00
if self.chip_size[chipname] > self.data_limit:
2024-01-16 18:02:24 +08:00
self.add_loc_num()
2023-06-27 13:01:44 +08:00
def run(self):
2023-12-20 17:06:48 +08:00
# self.assign_samples()
2023-07-05 17:15:46 +08:00
try:
self.assign_samples()
except Exception as e:
2023-07-12 14:27:18 +08:00
self.return_log.append(f'T7排样出错 请联系!{e}')
2023-07-05 17:15:46 +08:00
self.index_assignments = {}
2023-06-27 13:01:44 +08:00
outputname = 'assignments_%s_%s' % (datetime.now().strftime("%m%d%H%M"), os.path.basename(self.path))
outputpath = os.path.join(self.output, 'result', outputname)
writer = pd.ExcelWriter(outputpath)
2023-12-07 17:47:53 +08:00
chip_loc = 1
2024-01-02 13:53:43 +08:00
librarynum = 0
2023-06-27 13:01:44 +08:00
for chip_idx, chip_assignments in self.index_assignments.items():
2024-01-18 18:31:13 +08:00
if not chip_assignments:
continue
2023-06-27 13:01:44 +08:00
df = pd.DataFrame(chip_assignments)
2023-12-14 10:26:34 +08:00
df['time'] = df['time'].dt.strftime('%Y-%m-%d')
2024-01-18 18:31:13 +08:00
2023-12-14 10:26:34 +08:00
if [method for method in df['拆分方式'].values if '极致' in method]:
2023-06-27 13:01:44 +08:00
addname = 'X'
else:
addname = ''
2024-02-05 17:13:32 +08:00
if df['data_needed'].sum() < 1600 and not addname:
df['note'] = '排样数据量不足1600G'
self.no_assign_data.extend(df.to_dict('records'))
continue
if librarynum > self.librarynum:
df['note'] = '排样管数超标'
self.no_assign_data.extend(df.to_dict('records'))
continue
librarynum += len(set(df['#library'].values))
2023-12-07 17:47:53 +08:00
self.dec_barcode_radio(chip_idx)
2024-01-30 14:31:18 +08:00
chipname = addname + chip_idx
sum_list = list()
for library, library_df in df.groupby('#library'):
sum_list.append(dict(
二次拆分=library,
客户=library_df['customer'].values[0],
类型=library_df['classification'].values[0],
打折前=library_df['data_needed'].sum()
))
df_sum = pd.DataFrame(sum_list)
res_df = pd.concat([df, df_sum], axis=1)
res_df.to_excel(writer, sheet_name=chipname, index=False)
2023-12-07 17:47:53 +08:00
chip_loc += 1
2024-02-05 17:13:32 +08:00
# self.no_assign_data.extend(self.diffic_assign_data)
2023-12-14 10:26:34 +08:00
no_assign_df = pd.DataFrame(self.no_assign_data)
2024-01-30 14:31:18 +08:00
no_assign_df = no_assign_df.applymap(lambda x: format_date(x) if isinstance(x, pd.Timestamp) else x)
2024-02-05 17:13:32 +08:00
if not no_assign_df.empty:
no_assign_df = no_assign_df[self.need_cols]
2023-12-14 10:26:34 +08:00
no_assign_df.to_excel(writer, sheet_name='未测', index=False)
2023-06-27 13:01:44 +08:00
if self.return_log:
pd.DataFrame(self.return_log).to_excel(writer, sheet_name='log', index=False)
writer.close()
return outputpath
if __name__ == '__main__':
2023-07-05 17:15:46 +08:00
start_time = time.time()
2023-12-07 17:47:53 +08:00
filepath = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'example', 'input排样表.xlsx')
2023-07-05 17:15:46 +08:00
output_file = ''
2023-12-07 17:47:53 +08:00
layout = AutoLayout(filepath, output_file)
2023-07-05 17:15:46 +08:00
layout.run()
end_time = time.time()
execution_time = end_time - start_time
print(f"代码执行时间为:{execution_time}")
# server()